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Cocaine is a highly active stimulant that alters dopamine metabolism in the central nervous system resulting in a feeling of
euphoria that with time can lead to addictive behaviours. Cocaine has numerous deleterious effects in humans including seizures,
vasoconstriction, ischaemia, increased heart rate and blood pressure, cardiac arrhythmias and sudden death. The cardiotoxic effects of
cocaine are indirectly mediated by an increase in sympathomimetic stimulation to the heart and coronary vasculature and by a direct
effect on the ion channels responsible for maintaining the electrical excitability of the heart. The direct and indirect effects of cocaine
work in tandem to disrupt the co-ordinated electrical activity of the heart and have been associated with life-threatening cardiac
arrhythmias. This review focuses on the direct effects of cocaine on cardiac ion channels, with particular focus on sodium, potassium
and calcium channels, and on the contributions of these channels to cocaine-induced arrhythmias. Companion articles in this edition of
the journal examine the epidemiology of cocaine use (Wood & Dargan [1]) and the treatment of cocaine-associated arrhythmias
(Hoffmann [2]).

Introduction

Recreational use of cocaine causes increases in heart rate
and blood pressure, effects that can be attributed primarily
to its activity on autonomic nerves where cocaine acts as a
competitive antagonist of norepinephrine uptake into
nerve terminals and increases the systemic concentration
of circulating catecholamines [3–5]. b-adrenergic stimula-
tion of the heart is known to modulate calcium metabo-
lism, the activities of sarcolemmal ion channels and
myocardial contractility [4, 6]. Circulating catecholamines
also act as vasoconstrictors of coronary vasculature
leading to ischaemia and myocardial infarction, suspected
causes of death in many cases of cocaine abuse [5, 7].
Recent evidence suggests that inherited channelopathies
that predispose individuals to lethal arrhythmias may
potentiate the cardiotoxic effects of cocaine [8–10].

Although cocaine is known to potentiate arrhythmias
caused by pre-existing myocardial diseases [11, 12], several

studies point to a more direct pro-arrhythmic role for
cocaine. Autopsies of patients who died following cocaine
use indicate that in many cases death occurred in healthy
individuals who had no evidence of myocardial damage
or coronary vascular disease [13–16]. In these patients
cocaine may induce arrhythmias by mechanisms that are
independent of other predisposing factors. In addition to
its effects on heart rate and blood pressure, cocaine also
disrupts the co-ordinated electrical activity of the heart
causing increases in the PR, QRS and QT intervals of the
electrocardiogram (ECG) [17–22]. These electrophysiologi-
cal changes are generally attributed to the direct effects of
cocaine on cardiac ion channels where multiple sites of
action are known [13, 15]. Cocaine inhibits L-type calcium
(Ca) currents, delayed rectifier potassium (K) currents, and
sodium (Na) currents of cardiomyocytes [23–25]. The
combination of enhanced sympathetic stimulation, distur-
bances in cardiac electrophysiology, pre-existing heart
disease and genetic variants that increase susceptibility to
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arrhythmias may act in concert to produce the potent car-
diotoxic effects of cocaine in humans. This review focuses
on evidence for direct modulation of voltage-dependent
cardiac ion channels (specifically, Na, K and Ca channels) by
cocaine and the roles such direct effects play in cocaine-
induced arrhythmia.

Cocaine slows the conduction of
myocardial electrical impulses

One of the hallmarks of cocaine toxicity is a reduction in
myocardial conduction velocity, a well-known risk factor
for cardiac arrhythmias [13, 14, 19, 20, 24].Voltage-gated Na
channels play a key role in the electrical excitability of the
myocardium and are responsible for the rapid upstroke of
the cardiac action potential (AP). Within the range of
concentrations known to cause acute toxicity in humans
(1–70 mM) [12], cocaine produces a potent inhibition of
cardiac Na currents [24, 26] and prolongs the refractory
period for the generation of APs [27]. Cocaine-induced
inhibition of Na channels and slowing of myocardial con-
duction underlie the prolonged QRS interval associated
with the use of this drug [24].

Alcohol is frequently consumed by individuals who use
cocaine [28, 29] because it is perceived to potentiate and
prolong the effects of the drug [30, 31].The combination of
ethanol and cocaine has been shown to increase heart rate
and blood pressure beyond what is observed for the indi-
vidual drugs and increases the risk of adverse cardiac
events [30, 32–34]. Cocaethylene, a metabolite of cocaine
and ethanol [35], slows cardiac conduction, delays repolar-
ization [36] and is a potent inhibitor of both Nav1.5 sodium
and human ether-à-go-go-related gene encoded potas-
sium channels [37–40]. Cocaethylene inhibition of cardiac
ion channels contributes to the increased incidence of
cardiac arrhythmias associated with the combined use of
cocaine and alcohol [41–43].

Cocaine inhibition of cardiac
sodium currents

Cellular electrophysiological recording from dissociated
cardiomyocytes and heterologous expression systems has
been widely used to investigate the effects of cocaine on
voltage-gated Na channels [24, 26, 44–47]. Within a clini-
cally relevant range of concentrations (<30 mM) cocaine
produces little inhibition of Na currents when cardiomyo-
cytes are held at a hyperpolarized potential and stimulated
at low frequency [24]. This observation is consistent with
the proposal that cocaine does not bind appreciably to Na
channels under resting conditions. The effects of cocaine
have been further investigated using the heterologously
expressed Nav1.5 channel. Nav1.5, encoded by the SCN5A
gene, is the predominant Na channel expressed in cardiac

tissues and is an important determinant of electrical excit-
ability. Increasing the stimulation frequency produces a
progressive reduction in Nav1.5 current amplitude for suc-
cessive pulses within a stimulation train by a mechanism
commonly referred to as use-dependent inhibition
(Figure 1A).The finding that rapid repetitive depolarization
enhances cocaine inhibition indicates that Na channel
gating (i.e. activation, inactivation) plays an important role
in cocaine binding. An essential component of the
cocaine-induced use-dependent inhibition is that the
drug-modified channels do not fully recover during
the short rest interval between depolarizing pulses. In the
absence of cocaine the majority of cardiac Na channels
rapidly recover from inactivation at hyperpolarized
voltages with time constants (t) of the order of 10 ms
(Figure 1B). Cocaine substantially reduces the fraction of
Na channels recovering with the rapid time constant and
dramatically slows the recovery of drug-modified channels
(t = 7.5 s). Drug binding prevents Na channels from fully
recovering between stimulation pulses resulting in use-
dependent inhibition. Cocaine also produces an apparent
shift in steady-state inactivation that selectively reduces
the availability of Na channels at voltages near the resting
membrane potential. By binding preferentially to inacti-
vated states, cocaine alters the steady-state equilibrium
resulting in channels that appear to inactivate at
more hyperpolarized voltages (Figure 1C). As with use-
dependent inhibition, the slow recovery of cocaine-
modified channels underlies this shift in availability. These
data support a model in which cocaine binds preferentially
to open and inactivated states and stabilizes Na channels
in a non-conducting inactivated state from which they
slowly recover at hyperpolarized voltages.

Cocaine binding to sodium
channels is state-dependent

The observed effects of cocaine are consistent with the
basic tenants of the modulated receptor hypothesis (MRH),
a widely employed model used to describe the binding of
local anaesthetics [48, 49]. MRH is rooted in the principle
that the affinity of local anaesthetic binding varies with the
gating state of the channel with the open (O) and inacti-
vated (I) states having higher affinity than closed (C) states
(Figure 2). The model proposes that under resting condi-
tions, the interaction of anaesthetics with closed Na chan-
nels (C→CD) is minimal because the binding site is in its
low affinity conformation and access to the site is barred
by the closed activation gate. Depolarization has two
effects: i) the channels open permitting drugs to access
rapidly the binding site through the cytoplasmic aqueous
pathway (O→OD) and ii) it converts the anaesthetic
binding site to its high-affinity conformation. After several
milliseconds of depolarization the channels begin to
inactivate (O→I), which is known to stabilize further the
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binding of many local anaesthetics (I→ID). Consequently,
prolonged depolarization beyond what is necessary to
rapidly inactivate Na channels (1–5 ms) frequently pro-
motes high-affinity binding.The time course of anaesthetic
binding to inactivated channels (I→ID) is generally slower
than what is observed for open channels (O→OD) but in
most cases has similar, if not higher binding affinity
[48–50]. Unlike the block of open channels where drugs
gain access to the binding site through the permeation
pore, the inactivation gate of Na channels is believed to act
by plugging the cytoplasmic entrance of the channel thus
preventing drug access to the receptor via the aqueous
pathway [51]. To account for anaesthetic binding to inacti-
vated states a second hydrophobic pathway that permits
uncharged forms of these drugs to access the binding site
has been proposed [48, 49]. Small lipophilic and neutral
anaesthetics gain access to the binding site on inactivated
Na channels more readily than the large water-soluble
drugs suggesting that size, hydrophobicity and charge
play important roles in drug binding via this pathway [52].

A prominent feature of modulated receptor models is
that the affinity of drug binding is linked to the gating state
of the channel. Consequently, manipulations that interfere
with the transition of Na channels into high-affinity open
and inactivated states are predicted to weaken drug
binding. The link between Na channel gating and drug
binding has been explored by exposing Na channels to
enzymes, modifying reagents and toxins that disrupt fast
inactivation [53–56]. Although the data generally support
the concept that inactivation contributes to local anaes-
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Figure 1
Properties of cocaine inhibition of cardiac Na channels. Effects of cocaine
on cardiac (Nav1.5) Na channels heterologously expressed on Xenopus
oocytes were investigated. (A) Use-dependent inhibition induced by
applying depolarizing pulses at a frequency of 5 Hz. (B) Recovery from
inactivation measured in the absence and presence of cocaine. In control
experiments the channels recovered with time constants of 11 and
189 ms. After application of cocaine the majority of the channels (77%)
recovered with a time constant of 7.5 s. (C) Steady-state inactivation was
measured by applying depolarizing prepulses between -120 and -60 mV
for 60s. The smooth curves are fits to a Boltzmann function with mid-
points of -80 mV for control and -84 mV after application of cocaine.
Figure reproduced with permission from O’Leary [47]
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Figure 2
State-dependent drug binding to Na channels. Modulated receptor
model describing the state-dependent binding of local anaesthetics. C, O
and I represent the closed, open and inactivated states of Na channels,
respectively. CD, OD and ID are the drug-modified (D) equivalents. Anaes-
thetics generally bind with low affinity to closed channels (C) and high
affinity to the open (O) and inactivated (I) states. Drugs rapidly access the
binding site on open channels (O→OD) through the aqueous pore.
Access to the binding site on the closed (C→CD) and inactivated (I→ID)
states is through an intrinsically slower hydrophobic pathway
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thetic binding, the findings are complicated by the non-
specific effects of these treatments, which in addition to
disrupting fast inactivation may alter other properties of
the channel [57–59]. More recent studies employ muta-
tions of the interdomain D3-D4 linker of Na channels, the
putative inactivation gate, that selectively eliminate fast
inactivation [60–63]. This more focused approach offers
distinct advantages in that the mutation sites are well
defined and physically separated from those that directly
participate in local anaesthetic binding [64, 65]. D3-D4
linker mutations that remove fast inactivation substantially
reduce the cocaine-induced use-dependent inhibition and
accelerate the recovery of the drug-modified channels
[47]. These studies indicate that preventing cardiac Na
channels from adopting the high-affinity inactivated con-
formation weakens cocaine binding. This conclusion is
further supported by steady-state measurements showing
that the affinity of cocaine binding increases >20-fold as
Na channels shift between the closed (KD = 235 mM) and
inactivated (KD = 10 mM) states [24, 66, 67].

A rapid component of cocaine inhibition is observed in
native cardiac Na channels that display properties consis-
tent with a pore-blocking mechanism [24]. This compo-
nent of cocaine inhibition has been further investigated by
using D3-D4 linker mutations that eliminate fast inactiva-
tion [47]. Cocaine produces a time- and concentration-
dependent inhibition of the non-inactivating Na current
(Figure 3A). The dissociation constant (KD) of cocaine
binding to the open channels (KD = 122 mM) is greater than
that of inactivated channels (KD = 4 mM) suggesting that at
clinically relevant concentrations (<50 mM) the cocaine
block may not significantly contribute to the observed Na
channel inhibition. However, unlike the inactivation-
dependent component, the cocaine block of open chan-
nels displays strong voltage dependence at depolarized
voltages suggesting that the drug traverses approximately
50% of the membrane electric field from the internal side
to reach its binding site [68]. Similar voltage sensitivity has
been observed for local anaesthetics and other blockers
and is consistent with a binding site situated deep within
the cytoplasmic aqueous pore [54, 63, 69, 70]. Electrostatic
interaction with the membrane electric field promotes
binding by driving the positively charged drugs onto their
binding sites. An important consequence of this voltage-
dependence is that at the peak of the cardiac AP (+40 mV)
the affinity of cocaine block of open channels (KD = 14 mM)
approaches what is observed for inactivated (KD = 4 mM)
states [47]. Overall, the data are consistent with a model in
which cocaine binding to both the open and inactivated
states contributes to Na channel inhibition during the
cardiac AP.

The evidence is consistent with a model in which the
cocaine binds to a site located near the cytoplasmic
entrance of Na channels. Channel opening facilitates
cocaine binding by creating an aqueous pathway that
enables the drug to access rapidly its binding site. Because

depolarization causes cardiac Na channels to open briefly
(<1 ms) before inactivating [71], only a small fraction of
the open Na channels bind cocaine during a cardiac AP.
However, cocaine binding to open channels is further sta-
bilized as the Na channels inactivate. The rapid cocaine
block of open channels coupled with more stable binding
to inactivated channels act in a cooperative fashion to
produce the observed use-dependent inhibition of cardiac
Na channels (Figure 1A).

Molecular studies of the cocaine
binding site of Na channels

The S6 membrane-spanning segments of all voltage-gated
Na channels include highly conserved amino acids that
line the cytoplasmic entrance of the channels and contrib-
ute to the binding of local anaesthetics [65, 67, 72–75].
Mutagenesis of the neuronal (Nav1.2) Na channel identi-
fied two aromatic residues (phenylalanine, tyrosine) of the
S6 segment of homologous domain four (D4S6) that
appear to be exposed within the cytoplasmic aqueous
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Figure 3
Cocaine block of an inactivation-deficient Na channel mutant. The
inactivation-deficient mutant was constructed by replacing hydrophobic
residues of the interdomain D3-D4 linker of the cardiac (Nav1.5) Na
channel with glutamines (IFM→QQQ) [64]. The mutant channels were
heterogously expressed in Xenopus oocytes and Na currents recorded
using two-electrode voltage clamp. (A) Currents of non-inactivating
mutant before (CTRL) and after application of cocaine (25–150 mM). (B)
The decay of the current was fitted with an exponential function and the
apparent blocking rate (1/t) plotted vs. the cocaine concentration.
The straight line predicts a KD for cocaine binding at -10 mV of 122 mM.
Figure reprinted with permission from O’Leary & Chahine [47]
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pore where they directly contribute to local anaesthetic
binding [65]. These residues are situated near the middle
(F1760) and C-terminus (Y1767) of the D4S6 and are sepa-
rated by approximately 11 Å, a distance that is appropriate
for the binding of most clinically useful anaesthetics
ranging between 10 and 15 Å in length [76]. Substituting
non-aromatic residues at these positions in the cardiac
(Nav1.5) Na channel reduces cocaine-induced use-
dependent inhibition and accelerates the recovery of the
drug-modified channels [47, 67]. Mutations of the tyrosine
produce a more marked reduction in use-dependent inhi-
bition suggesting that this residue may play a more promi-
nent role in cocaine binding [47]. This differs from many
conventional local anaesthetics, where the phenylalanine
has generally been shown to play a more critical role in
binding [72].Differences in the chemical structure or physi-
cal properties of cocaine and local anaesthetics appear to
cause these drugs to adopt slightly different orientations
within the D4S6 binding site. The membrane-spanning
D1S6 segment of the skeletal muscle (Nav1.4) Na channel
has also been implicated in cocaine binding suggesting
that residues of the D1S6 may form a common interface
with the D4S6 segment [77]. Cocaine and local anaesthet-
ics share an overlapping binding site located near the cyto-
plasmic entrance of Na channels, which may explain their
similar mechanisms of action. Interestingly, the class Ib
anti-arrhythmic drug lidocaine displays rapid binding
kinetics by comparison with cocaine and appears to dis-
place cocaine competitively from its binding site on native
cardiac Na channels [78–80]. Significantly, lidocaine is
being investigated as a potential antidote for cocaine-
induced arrhythmias [81, 82].

Consequences of cocaine binding
within the aqueous pore of
Na channels

The binding of cocaine within the cytoplasmic aqueous
pore of Na channels has important implications. Studies
have demonstrated cocaine inhibition of Na current at
both the whole-cell and single-channel levels [68, 83]. The
data are consistent with an open-channel blocking mecha-
nism where cocaine binding within the pore prevents Na+

ions from permeating through the channel. Additional
support for this mechanism is obtained from studies
showing that raising the external concentration of Na+ ions
weakens the cocaine inhibition and reduces the affinity of
cocaine binding [47, 68]. This effect is specific for changes
in external Na+ concentration as equivalent changes in
internal Na+ concentration have little effect on cocaine
binding [68]. External Na+ and internal cocaine appear to
occupy distinct but overlapping binding sites within the
Na channel pore. Electrostatic interaction between the
positively charged cocaine and Na+ appears to prevent
both sites from being simultaneously occupied. Antago-

nism of cocaine binding by external Na+ may contribute to
the beneficial effects of hypertonic sodium solutions on
cocaine-induced electrical disturbances [11, 17, 84].

Clinically useful local anaesthetics have pKa values
between 7.7 and 9.5 causing these drugs to be in rapid
equilibrium between positively charged (protonated) and
neutral (unprotonated) forms at physiological pH [85]. The
neutral forms of anaesthetics are able to permeate biologi-
cal membranes and when applied externally these drugs
readily gain access to the cell cytoplasm. This is consistent
with data showing that the potency of anaesthetics is gen-
erally higher when applied in alkaline solutions that favour
the uncharged (i.e. membrane-permeant) forms of the
drugs [83, 86].The positively charged forms of anaesthetics
are less membrane-permeant but are generally more
potent Na channel inhibitors when applied from the cyto-
plasmic side [50]. Anaesthetics permeate cell membranes
in their neutral forms before converting to their positively
charged forms within the cytoplasmic compartment
[87, 88].

Cocaine has a pKa of 8.7 so that at physiological pH
(7.2) the drug is predominately (97%) charged. Only
neutral cocaine, totalling 3% of the externally applied drug
concentration, is capable of gaining access to membrane-
bound Na channels and accounts for the bulk of Na
channel inhibition. This is consistent with data showing
that elevating the external pH increases the fraction of
neutral cocaine and enhances the inhibition of cardiac Na
channels [83]. In addition to determining the partitioning
of cocaine between the aqueous and lipid phases, external
pH also has a direct effect on cocaine binding. Reducing
external pH has been shown to stabilize cocaine binding
and slow the recovery of drug-modified channels [68, 83,
89]. These findings are consistent with studies showing
that local anaesthetic binding to Na channels is stabilized
by reducing extracellular pH while equivalent changes in
the internal pH have little effect on drug binding [48,
90–94]. These findings indicate that external protons per-
meate through the channel pore where they interact with
intracellular anaesthetic converting the bound drugs to
their more potent charged forms. Changes in external pH
have little effect on the binding of permanently charged
quaternary derivatives of local anaesthetics indicating that
extracellular protons produce changes in binding by
acting on the drug rather than the channel protein [89].

Seizures are common events during severe cases of
cocaine overdose [95] and are often associated with sub-
stantial reductions in the arterial pH [11, 96]. Enhanced
cocaine binding at low pH may exacerbate Na channel
inhibition and further slow electrical conduction within
the myocardium. This is supported by data indicating a
close relationship between arterial pH and QRS intervals in
cocaine-intoxicated patients [97]. Systemic administration
of hypertonic sodium bicarbonate solutions that restore
physiological pH produce a rapid reversal of the cocaine-
induced widening of the QRS interval by relieving Na
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channel inhibition [17, 79].The combination of elevated pH
and increased extracellular Na+ concentration appears to
work in concert to weaken cocaine binding to Na channels
and reduce the pro-arrhythmic potential of this drug.
Figure 4 summarizes the important determinants of
cocaine binding to cardiac Na channels and illustrates the
synergistic relationship between the direct and indirect
cardiotoxic effects of cocaine.

Cocaine and torsades de pointes

Although monomorphic ventricular tachycardia associ-
ated with inhibition of INa may be the most common
arrhythmogenic effect of cocaine, it is not the only one.
There is evidence in the literature that cocaine can also
induce torsades de pointes (TdP), a polymorphic ventricu-
lar tachycardia characterized by twisting of the QRS axis
around the isoelectric line of the ECG [15, 98]. Drug
induced TdP is typically associated with QT interval prolon-
gation [99, 100] and it is notable that cocaine-induced TdP

has been reported in individuals with idiopathic long QT
syndrome [101, 102] and in patients taking concomitant
medication that confers an independent risk of QT interval
prolongation and TdP, particularly methadone or
levomethadyl [103–105]. A study of the short-term, acute
effects of smoking cocaine on habitual cocaine users
showed significant prolongation of rate-corrected QT (QTC)
interval, smaller T wave amplitude and more marked U
wave [106]. Electrocardiogram analysis of patients hospi-
talized for cocaine abuse has shown marked evidence of
altered repolarisation, including QTC interval prolongation,
and increased QTC dispersion [107, 108]. In one analysis of
emergency room patients treated for cocaine abuse, 26%
of ECGs exhibited QTC intervals > 440 ms, whilst a higher
figure of 75% was found amongst a small number of sub-
jects who died suddenly [107]. In another study, patients
were divided into two groups on the basis of presence or
absence of anginal chest pain, with both QTC prolongation
and dispersion being more prominent in the chest pain
group; this may suggest an increased risk when abnormal
repolarization is combined with myocardial ischaemia

COCAINE

Increased cocaine binding 
to Na channels

Inhibition of Na currents

Decreased phase 0 
depolarization and 

intracardiac conduction

Rapid heart rate

Membrane depolarization

Acidosis: Decreased pH

Myocardial damage: 
Infarction

Ischaemia

QRS prolongation

Arrhythmia

Sudden cardiac death

Reduced myocardial 
contractility

Depressed ventricular 
function

Figure 4
Schematic of cocaine-induced cardiotoxicity related to Na channel inhibition. Cocaine stabilizes Na channels in inactivated states that do not conduct Na
current. Na channel inhibition slows the rapid upstroke of the AP (Phase 0 depolarization), an important determinant of intracardiac conduction. Slowed
conduction decreases myocardial contractility leading to depressed left ventricular function and haemodynamic impairment. Prolongation of ventricular
depolarization (QRS interval) exposes the myocardium to potentially lethal re-entrant arrhythmias. Combining Na channel inhibition with other pro-
arrhythmic electrical disturbances, such as the inhibition of delayed rectifier hERG (long QT intervals) or L-type calcium channels, further increases the
likelihood of arrhythmias and sudden cardiac death.Cocaine-induced ischaemia caused by enhanced sympathomimetic stimulation of coronary vasculature
can lead to myocardial damage that further potentiates Na channel inhibition and cardiac arrhythmias. Cocaine binding is enhanced at rapid heart rates due
to use-dependent inhibition, under conditions where the resting membrane potential is depolarized due to high-affinity binding to inactivated states and
during episodes of acidosis, which stabilizes cocaine in its more potent positively charged form
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[108]. The risk of TdP may also be exacerbated when
cocaine is taken in combination with alcohol [109].

The mechanisms by which drugs lead to QT interval
prolongation and TdP have been investigated intensively.
Excessively delayed ventricular repolarization is associated
at the cellular level with early-afterdepolarizations (EADs),
depolarizing events that are superimposed on AP repolar-
ization and that are implicated as potential trigger events
for TdP arrhythmia; at the tissue level increased dispersion
of repolarization may form a substrate for re-entrant tachy-
cardia (see [99, 100] for reviews). The majority of torsa-
dogenic agents share a common cellular mechanism of
action, which is to inhibit a cardiac K current called the
‘rapid delayed rectifier (IKr) [99, 100, 110, 111]. Accordingly,
the role of IKr in ventricular repolarization and TdP will
briefly be considered, followed by evidence that the chan-
nels mediating IKr are targets for pharmacological inhibi-
tion by cocaine and its metabolites.

IKr and ventricular repolarization

IKr was identified as a pharmacologically and biophysically
distinct repolarizing K current through the use of an
experimental Class III anti-arrhythmic agent, E-4031 [112].
The pore-forming sub-unit of the channel was later identi-
fied as being encoded by human ether-à-go-go related
gene (hERG alternative nomenclature KCNH2), mutations
to which were associated with one form (LQT2) of congeni-
tal long QT syndrome [113–116]. Both native IKr and
heterologously expressed hERG channels display unique
biophysical properties (for reviews see [100, 111, 116, 117]).
Figure 5 illustrates schematically the role of IKr channels
in ventricular repolarization. Due to a rapid voltage-
dependent channel ‘inactivation’ process, early during the
ventricular AP, these channels make relatively little contri-
bution to AP repolarization, but they make a greater con-
tribution as the AP plateau declines and inactivation is
relieved, with IKr/hERG current being maximal late in repo-
larization, prior to the terminal repolarization phase of the
AP [117–121], during which a different potassium current
(the inwardly rectifying K current, IK1) predominates [111,
122, 123]. Consequently, IKr is well suited to regulate ven-
tricular AP duration and, thereby, the QT interval of the
ECG. Due to the fact that IKr is so important for regulating
AP repolarization, drugs that impair IKr function produce
marked effects on AP duration and, consequently, upon
the QT interval duration of the electrocardiogram [99, 100,
110, 111].

Cocaine prolongs ventricular action
potential duration and inhibits IKr

A direct effect of cocaine on ventricular repolarization at
the cellular level was demonstrated by Kimura and col-

leagues [25]. They observed feline ventricular myocyte AP
prolongation with 10 and 50 mM cocaine [25]. At the higher
concentration, cocaine also elicited EADs. Cocaine-induced
EADs were exacerbated by isoprenaline and were sup-
pressed by the L-type calcium channel inhibitor verapamil
[25]. A key role has been identified for L-type calcium chan-
nels during delayed ventricular repolarization, in mediat-
ing Ca2+ ion entry that gives rise to EADs [100, 110, 124,
125]; this is concordant with the effect of verapamil on
cocaine-induced EADs in this study [25]. Net outward
delayed rectifier current was also inhibited by cocaine,
whilst the inward rectifier current IK1 was unaffected. Clark-
son and colleagues [23] subsequently demonstrated
marked (>20%) prolongation of guinea-pig ventricular APs
by 3 mM cocaine, whilst high cocaine concentrations led to
AP shortening. In this study both IK1 and the ‘slow’ compo-
nent of delayed rectifier K current (IKs) were comparatively
little affected by low concentrations of cocaine, whereas IKr

was markedly affected with a half-maximal inhibitory
concentration (IC50) of ~4 mM [23]. The overlap between
AP-prolonging and IKr-blocking concentrations of cocaine
in that study [23] is consistent with the notion that IKr block
mediates the AP prolonging effect of cocaine. A subse-
quent study has demonstrated that cocaine can also
inhibit ionic current (IKATP) carried by cardiac ATP-sensitive K
(KATP) channels (IC50 9 mM) [126]. These channels are inhib-
ited by normal intracellular levels of ATP and become acti-
vated during ischaemia; this gives rise to AP shortening
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Figure 5
Role of IKr in ventricular action potential repolarization. Schematic
diagram showing the profile of IKr (lower trace) during the ventricular
action potential (upper trace). Outward current flow via IKr increases
throughout the plateau phase of the action potential (marked by filled
arrows), peaking before terminal repolarization, during which IKr declines
(marked by open arrow)
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which may protect myocytes from calcium-overload [123].
Due to the fact that KATP channels are generally activated
under conditions of metabolic stress [123], KATP channel
block seems unlikely to mediate AP prolonging effects in
the well-perfused myocardium. However, it has been sug-
gested that this effect may be relevant in the context of
acute ischaemic preconditioning, which may ensue from
coronary spasm with cocaine exposure [126].

hERG and cocaine: the molecular
basis of IKr channel inhibition

Studies of recombinant hERG channels expressed in mam-
malian cell lines have advantages over native IKr in that i)
heterologous expression systems lack the overlapping cur-
rents in cardiomyocytes that can mask drug effects on IKr

and ii) the amplitude of ionic currents measured through
overexpressed hERG channels is greater than that through
native IKr [100, 127]. These features facilitate mechanistic
investigation of channel blockade. Effects of cocaine on
IhERG have been assessed using hERG channels expressed
in tsA201 cells, with marked IhERG inhibition observed at
micromolar concentrations during both conventional
voltage-clamp experiments and during experiments per-
formed using the action potential voltage clamp (AP
clamp) technique [128].The observed IC50 for cocaine inhi-
bition of IhERG elicited by voltage step protocols was 5.6 mM

(Figure 6A), whilst marked inhibition was also observed
under AP clamp (Figure 6B,C) [128]. Further experiments in
the same study pursued the mechanism of the inhibitory
effect, the results of which suggested that cocaine binds
preferentially to gated hERG channels in activated or inac-
tivated channel states [128]. An independent study pub-
lished the same year, using HEK293 cells as expression
system, reported a similar IC50 for IhERG inhibition of 7.2 mM,
whilst demonstrating that high concentrations of cocaine
were unable to inhibit channels encoded by
KCNQ1+KCNE1 (the genes responsible for a and b sub-
units that recapitulate native IKs; old nomenclature KvLQT1
+ minK) [129], consistent with the earlier observation of
comparative insensitivity to cocaine of ventricular IKs [23].
Application to the cell interior via the patch pipette solu-
tion of N-methyl-cocaine, a charged membrane imper-
meant cocaine analogue, demonstrated that cocaine most
likely acted through binding to a site accessible from the
interior of the cell membrane [129]. A third study (also
using the HEK293 cell expression system) reported an IC50

for IhERG inhibition of 4.4 mM [39],providing further indepen-
dent verification of significant inhibitory activity in the low
micromolar concentration range.

Additional insight into the hERG-blocking properties of
cocaine has been obtained through the study of the IhERG-
blocking propensity of cocaethylene, an ethyl homologue
of cocaine that would be anticipated to be formed in vivo
as a product of cocaine and alcohol co-ingestion [39, 40].

In two independent studies, cocaethylene was found to
inhibit IhERG with IC50 values of 1.2 mM [39] and 4.0 mM [40]
exhibiting properties of a predominantly open channel
blocker [39, 40]. By contrast, other metabolites of cocaine
have been reported to be markedly less potent IhERG inhibi-
tors [39]. Thus, cocaine’s major pyrolysis metabolite meth-
ylecgonidine inhibited IhERG with an IC50 of ~170 mM, whilst
ecgonine methylester or benzoylecgonine produced only
modest levels of IhERG inhibition (~20% or less) at 1 mM [39].
Collectively, these observations indicate that cocaine inhi-
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Inhibition of IhERG by cocaine. (A) shows concentration–response relations
for inhibition by cocaine of IhERG recorded from hERG-expressing tsA201
cells. IhERG was elicited by depolarization to +20 mV and tail currents were
observed on repolarization to -80 mV. Concentration–response relations
were similar whether IhERG amplitude was measured for currents during
the depolarizing pulse or for current tails. The calculated IC50 value was
5.6 � 0.4 mM. (B) shows ventricular action potential waveform used for AP
clamp experiments in which effects of cocaine on IhERG from ts201 cells
were studied. (C) IhERG in standard external solution (control) and following
exposure to 5 mM cocaine. Data are reproduced from O’Leary [128] with
permission
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bition of native IKr is mediated by drug blockade of the
pore-forming hERG subunit and that both the parent com-
pound and, in the setting of concurrent alcohol intoxica-
tion, cocaethylene are likely to produce hERG/IKr inhibition.

The remarkable sensitivity of hERG channels to phar-
macological inhibition by diverse drugs is related to par-
ticular structural features of the channel [100, 117, 123,
130]. These include a relatively large pore cavity and the
presence of aromatic amino acids (a tyrosine at position
652 (Y652) and a phenylalanine at position 656 (F656)) in
the inner (S6) helices of the channel; for some drugs con-
formational changes to the channel due to rapid voltage-
dependent inactivation are also important to stabilize
drug binding [100, 117, 123, 130–132]. The molecular basis
of cocaine inhibition of hERG has been investigated using
wild-type (WT) and mutant hERG channels expressed in
HEK293 cells [133]. Inhibition of WT IhERG in this study
occurred with IC50 values between ~9 and ~14 mM depend-
ing on external potassium concentration, though these dif-
ferences were not statistically significant [133].The use of a
range of inactivation-modifying mutations showed that
hERG inhibition by cocaine does not depend on the
process of hERG channel inactivation, although mutation
of one residue (S620) could impair drug binding indepen-
dent of any role in the inactivation process. Mutation of
nearby inner helical residues (T623, S624) impacted signifi-
cantly on potency of inhibition (with IC50 values for T623A
and S624A mutations of ~167 and ~45 mM), whereas
alanine mutation of the aromatic residue Y652 increased
the IC50 to ~310 mM. Mutations of the nearby aromatic
residue F656 also impacted significantly on blocking
potency, with a strong correlation between hydrophobic-
ity of the residue at position F656 and observed blocking
potency [133]. Residues shown to impact significantly on
cocaine binding to hERG are indicated schematically in
Figure 7.

To summarize, cocaine inhibits hERG channels by
binding within the channel pore cavity, gaining access to
its binding site on channel gating. Once in the channel it
interacts with aromatic S6 residues, with the observed
level of blockade also influenced by inner helical residues.

Effects of cocaine on L-type calcium
channels

Ca2+ influx into cardiomyocytes through ionic current (ICa,L)
carried by L-type calcium channels is essential for initiation
of the process of excitation-contraction coupling and also
contributes to the plateau phase of ventricular APs [134–
136]. Due to contribution of ICa,L to the AP plateau and
its role in mediating Ca2+ entry during EADs, agents that
modulate ICa,L can either exacerbate or offset the effects of
reduced IKr/hERG function [100].

By contrast with the clear-cut situation regarding IKr/
IhERG, the effects of cocaine on cardiac ICa,L are perhaps a

little more complex: both inhibitory and stimulatory
effects have been reported [23, 25, 137]. In their study
of feline ventricular myocytes, Kimura and colleagues
observed a modest (23%) inhibitory effect of 50 mM

cocaine on peak ICa,L amplitude, without any concurrent
significant alteration of the current’s inactivation time
course [25]. In their subsequent study of guinea-pig ven-
tricular myocytes, Clarkson and colleagues also observed
an inhibitory effect of high concentrations of cocaine (30
and 100 mM being associated with reductions of peak ICa,L

by ~24 and 43%, respectively, in comparison with a 9%
reduction in control (cocaine-free) time-matched mea-
surements [23]). These authors also observed a biphasic
effect of cocaine on ventricular APs, with lower concentra-
tions prolonging AP duration, whilst high concentrations
produced AP shortening [23].The AP shortening observed
at the higher cocaine concentrations studied could be
attributable to its inhibitory effect on ICa,L together with a
concomitant inhibitory action on plateau sodium current
that was also observed [23].

In contrast with ICa,L inhibitory effects of high cocaine
concentrations, a stimulatory effect of low concentrations
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Figure 7
Schematic diagram showing amino-acid residues on hERG implicated in
cocaine binding. The figure shows a vertical cross section through two of
the four subunits that comprise functional hERG channels, focusing on
the S6 and pore helical regions implicated in drug binding.The selectivity
filter of the channel and direction of outward flux (as would occur physi-
ologically through open channels) of K+ ions are also shown. Aromatic
residues Y652 and F656 are implicated in the binding of a range of drugs
and their mutation influences cocaine binding [133]. T623 is also critical
for cocaine binding, whilst mutation of S624 also influences observed
potency of inhibition, though to a less marked extent [133]. Mutation of
the nearby S620 (not shown) to threonine, but not cysteine has also been
shown to influence potency of cocaine inhibition of IhERG [133]
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has been reported [137]. In a study of rat ventricular ICa,L at
both macroscopic and single channel levels, and using
both Ca2+ and Ba2+ ions as charge carriers, Premkumar
demonstrated a marked agonist effect of low mM and
sub-mM cocaine concentrations, with an observed EC50 of
274 nM [137]. The voltage dependence and single channel
conductance of ICa,L were unaffected. However, the channel
opening rate was increased whilst closing rate was
decreased, which taken together may account for the
increase in observed current [137].

An integrated view of the role
of IKr/hERG and Ca channel
modulating action of cocaine in
arrhythmogenesis

On the basis of clinical and experimental observations in
the literature considered in the foregoing sections, it is
possible to propose an integrated scheme (Figure 8) by
which modulatory effects of cocaine on IKr/hERG and ICa,L

influence arrhythmia risk.
Cocaine and cocaethylene concentrations up to 784 nM

and 1.45 mM in non-fatal trauma victims have been
reported [138, 139], whilst average post-mortem bloods
concentrations in ‘street cocaine’ fatalities can attain 20 mM

(6.2 mg l-1) [12]. Consequently, at clinically relevant

cocaine/cocaethylene concentrations, significant levels of
IKr/hERG blockade can be anticipated to occur, leading to
ventricular AP and QTc interval prolongation, as well as
enhanced QTc dispersion. These effects are likely to be
exacerbated (i) when alcohol consumption is combined
with cocaine abuse, (ii) when other QTc interval prolonga-
tion agents, particularly methadone, are consumed and (iii)
when other risk factors for TdP (e.g. congenital LQTS, elec-
trolyte abnormalities [99, 100]) are present. Ventricular AP
prolongation that would result from IKr/hERG inhibition
can be anticipated to increase risk of EADs, and this could
be further exacerbated (at least at high nM or low mM

cocaine concentrations) by an agonist effect on ICa,L. EADs
and increased QTc dispersion would be anticipated to
combine to lead to TdP arrhythmia. Due to the fact that
EAD risk is exacerbated at slow rates [100], ventricular
pacing might be considered to offset toxic effects of
cocaine mediated by delayed repolarization. However,
pacing at an increased rate could feasibly exacerbate the
INa inhibitory effect of cocaine. On the other hand, were ICa,L

inhibition to occur, this would be anticipated to offset the
cocaine-induced delayed repolarization. It has been noted
that K-channel related pro-arrhythmia is likely to occur
outside of the emergency room setting, but that for those
patients seen in hospital who are considered to be at ‘high
risk’ of TdP, intravenous magnesium may be beneficial
[140].

Cocaine inhibition of cardiac ion
channels and acute myocardial
ischaemia

Although the cardiotoxic effects of cocaine on the heart
are well documented, the mechanism by which this drug
promotes potentially life-threatening arrhythmias remains
controversial. In part, this stems from the pharmacological
properties of cocaine, which acts as both a local anaes-
thetic and a sympathomimetic agent [4, 13, 14]. Enhanced
sympathetic stimulation is believe to induce vasoconstric-
tion of coronary arteries that reduces the supply of oxy-
genated blood to the myocardium thereby promoting
infarctions and cardiac arrhythmias [7, 141, 142]. Alterna-
tively, the use of cocaine may be intrinsically pro-
arrhythmic capable of inducing lethal arrhythmias in the
absence of myocardial damage, coronary vascular disease
or ischaemia [12, 143–145]. In addition to its effects on
heart rate and blood pressure cocaine prolongs the PR,
QRS and QT intervals of the ECG [17–22]. These potentially
life-threatening electrical disturbances result from the
direct effects of cocaine and its metabolites on Na, K and
Ca channels.

The sympathomimetic effects of cocaine and the direct
inhibition of cardiac ion channels do not occur in isolation
and may be interrelated (Figure 4). A prominent feature of
acute myocardial ischaemia is a localized increase in extra-
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Figure 8
Schematic diagram showing links between hERG, L-type Ca current and
cocaine-induced arrhythmia. Vertical ‘information flow’ (downward
arrows) shows consequences of IKr/IhERG inhibition, namely prolongation
of ventricular action potential duration (APD) and consequent QTc pro-
longation and QTc dispersion at the intact tissue/heart level. Delayed
repolarization (especially at low rates) predisposes to early after-
depolarisations (EADs). EADs and enhanced dispersion of repolarization
(QTc dispersion) would be anticipated to combine to lead to TdP arrhyth-
mia. At low cocaine concentrations ICa agonism may exacerbate effects of
hERG inhibition. ‘+’ on left hand side of diagram indicate conditions that
exacerbate repolarization-delay/TdP risk.‘-’on right hand side of diagram
indicate where L-type Ca channel inhibition could offset consequences of
IhERG inhibition
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cellular potassium concentration ranging between 10 and
15 mM within the ischaemic zone [146, 147] resulting in
depolarization of the resting membrane potential of cardi-
omyocytes of 20–25 mV [147, 148, 149]. This K+-induced
depolarization occurs over the range of voltages where
cardiac Na channels inactivate (-100 to -60 mV) resulting
in an increase in the fraction of inactivated Na channels
under resting conditions (Figure 1C). High-affinity cocaine
binding to these inactivated channels is predicted to
reduce further the availability of the Na channels within
the ischaemic area further slowing electrical conduction
and increasing the risk of re-entry arrhythmias [150–153].
Another characteristic of ischaemia is acidosis, which can
cause the arterial pH to fall by more than a pH unit (�6.5)
[154–157]. Accumulation of H+ near the external mouth of
Na channels may lead to the protonation of internally
bound cocaine resulting in more stable drug binding,
slowed recovery and further decreases in electrical
conduction within the ischaemic zone. Finally, enhanced
sympathomimetic stimulation, the principal cause of
vasoconstriction, also promotes tachycardia that may
exacerbate the cocaine-induced use-dependent inhibition
of Na channels (Figure 1A).

Inherited mutations and drugs that reduce hERG cur-
rents have been shown to produce long QT syndromes
that predispose healthy individuals to ventricular arrhyth-
mias and sudden death [158, 159]. These lethal events
occur in the absence of other complications such as pre-
existing heart disease [158] or ischaemia [160]. Because of
its block of hERG channels, cocaine produces an acquired
form of long QT syndrome that may further increase
arrhythmogenicity. A suspected trigger for sudden death
in patients with long QT syndromes is emotional or physi-
cal stress, which is believed to act via an increase in sym-
pathetic stimulation [158]. Recent work suggests this may
be mediated by adrenergic regulation of hERG channels
[161]. Finally, lowering extracellular pH reduces hERG
current amplitude and alters gating kinetics, effects that
are expected to prolong further the QT interval [162, 163].
The downstream events associated with acute myocardial
ischaemia (i.e. ↓pH, ↑[K+]o) may enhance cocaine binding
to cardiac Na and K channels further exacerbating the
electrical disturbances and increase the risk of cardiac
arrhythmias (Figure 4).
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